
Appears in the First Instruction Prefetching Championship (IPC-1),
in conjunction with International Symposium on Computer Architecture (ISCA), 2020

IPC-1 Submission #92 – Confidential Draft – Do NOT Distribute!!

Divide and Conquer Instruction Cache Misses

Abstract—L1 instruction cache (L1i) misses are a major source of
performance degradation when the instruction footprint cannot be
captured in the L1i. Sequential prefetchers like a next-line prefetcher
are a common solution to mitigate this problem. However, this
approach falls short of efficiency when the program has lots of
complex control flow changes that occur frequently. This observation
has motivated researchers to suggest a myriad of sophisticated
proposals to address this problem. However, we find that there is still
significant room for improvement. Hence, in this paper, we introduce
a new instruction prefetcher to exploit the available potential.

In this paper, we address the L1i cache miss problem using a divide
and conquer approach. We carefully analyze why an instruction
cache miss occurs and how it can be eliminated. We divide instruction
cache misses into sequential and discontinuity misses. A sequential
miss is a cache miss that is spatially right after the last accessed block,
and the remaining misses are discontinuities.

While sequential and discontinuity prefetchers are already
proposed, in this paper, we show that the conventional implementation
of these prefetchers cannot adequately cover the misses because of
their shortcomings. Accordingly, we recommend an enhanced
implementation of each prefetcher. We find that for a sequential
prefetcher, there is a trade-off between timeliness and accuracy.
Consequently, we propose SN4L+wrong SNL prefetcher that
attempts to provide both accurate and timely prefetches. Moreover,
a conventional discontinuity prefetcher uses a single discontinuity
target for each record, and as such, its lookahead is limited to a single
discontinuity ahead of the execution stream, which limits its efficiency.
On top of that, it records an instruction block address per record that
results in a considerable storage cost. We introduce Dis prefetcher
to address the shortcomings. Our proposal offers 25% speedup
as compared to the baseline without any prefetcher when 128 KB
storage budget is provided for it and outperforms the state-of-the-art
prefetcher by 3% when a small 8 KB storage budget is provided to it.

I. INTRODUCTION

Frequent L1 instruction (L1i) cache misses are an important
source of performance degradation when the L1i cache is incapable
of capturing the large number of instruction blocks that are
required [3], [4], [7], [8]. Upon an L1i miss, no instruction is fetched
until the missing block arrives from the lower levels of the memory
hierarchy. In consequence, no new instruction is fed into the core
to be executed, which eventually stalls the core itself. Consequently,
instruction cache misses result in a considerable performance loss.

Instruction prefetching is the general solution to address this
problem. The simplest and most common instruction prefetchers
are sequential prefetchers that issue prefetch requests for a number
of subsequent blocks when they are triggered [10]. Sequential
prefetchers are mainly distinguished by the number of prefetch
requests that they issue upon activation, which is called the prefetch
depth. Higher depths usually offer more timely prefetches by
prefetching blocks that are sufficiently far ahead of the current
demanded block. However, this may impose lots of useless
prefetches that pollute the cache, queues, and the network-on-chip.
This pollution may offset the benefits of better timeliness. As a
result, there is a trade-off between accuracy and timeliness when
a fixed prefetch depth is assigned to a sequential prefetcher.

Sequential prefetchers only eliminate sequential misses. However,
in modern workloads, branch instructions frequently change the con-
trol flow. These changes may access a cache block that is not in the

cache, and consequently, a discontinuity cache miss occurs. As se-
quential prefetchers cannot cover such misses, it is necessary to have
a more powerful prefetcher that can take care of these misses as well.

Discontinuity prefetcher (DP) is a simple approach to assist se-
quential prefetchers [11]. DP uses the next-4-line prefetcher to cover
sequential misses. Every time an instruction miss occurs, DP creates
a record that includes the source and target addresses, which are the
last hit block and the missed block, respectively. The pair of source
and target blocks is called a discontinuity. Then DP stores the discon-
tinuity in the discontinuity table. This table is looked up by the source
address, and the target is recorded in the corresponding entry. As a
result, the discontinuity table is direct-mapped and tagless. When the
sequential prefetcher looks up the cache to decide whether it should
send a sequential prefetch or not, DP looks up the subsequent blocks
in the discontinuity table. If a valid target is found for a source
address, a discontinuity prefetch request will be sent for the target.

DP has several shortcomings. First, to reduce the storage
requirements, DP does not record the source address in the
table. Consequently, the discontinuity table is organized in a
direct-mapped and tagless structure. Consequently, conflicts
cannot be detected in such a table, which may result in inaccurate
prefetching. Moreover, DP uses a single target for each source
address. However, some blocks may have multiple targets because
of having multiple branches in the source block. As such, DP
cannot cover these misses. Moreover, the discontinuity prefetcher is
limited to prefetching a single discontinuity ahead of the demanded
block. As a result, it cannot discover the blocks far ahead of the
demanded block to issue timely prefetches, especially in the case of
having frequent discontinuities that occur shortly one after another.
These shortcomings of DP motivated the researchers to develop
other techniques to tackle the instruction cache misses.

Many proposals suggested temporal prefetching [3], [4]. In
temporal prefetching, the sequence of observed cache accesses [3]
or misses [4] is recorded and replayed to cover the misses. Proactive
Instruction Fetch (PIF) is the state-of-the-art temporal prefetcher that
offers a significant performance improvement at the cost of imposing
over 200 KB storage cost per core to the baseline design [3]. Other
prefetching techniques offered proposals to mitigate the storage cost.
Return-Address-Stack Directed Instruction Prefetcher (RDIP) [6]
uses the content of the Return-Address-Stack (RAS) to detect the
program context and prefetch the missed blocks that are already
observed for that context. RDIP reduces the storage cost to over
60 KB. However, BTB-directed prefetchers impose much lower
storage cost by prefetching according to the control flow changes
that are already recorded in the branch target buffer (BTB), which is
available in the conventional processors [7]–[9]. Nevertheless, prior
work has shown that BTB misses are a fundamental bottleneck
for this prefetching scheme [7], [8]. Shotgun is the state-of-the-art
BTB-directed prefetcher that requires only 6 KB storage to work,
assuming that the processor has a 2 K-entry BTB [7].

In this paper, we introduce a new prefetcher based on the
sequential and discontinuity prefetchers. We show that our
prefetcher offers the level of performance that is offered by the
state-of-the-art temporal and BTB-directed prefetchers when a
considerable storage budget is provided for them. Moreover, we

1



show that our prefetcher offers a significant speedup even when a
small storage budget is provided to the prefetcher and outperforms
the state-of-the-art prefetchers with a large gap.

II. SN4L+WRONG SNL+DIS PREFETCHER

SN4L+wrong SNL+Dis prefetcher is a combination of two
sequential instruction prefetchers, named SN4L and wrong SNL,
and a discontinuity prefetcher named Dis prefetcher. This section
presents the details of these prefetchers.

A. Selective Next-Four-Line Prefetcher (SN4L)
Selective-next-four-line (SN4L) prefetcher is proposed to provide

both accurate and timely sequential prefetches. For each instruction
block, SN4L devotes a single bit named status bit. If this bit is set
for a block, it means the state of that block is demanded; otherwise,
the block is prefetched. SN4L issues a prefetch request for a block
if the state of that block is demanded.

Whenever a block is demanded by the processor, its status bit is
set, and every time SN4L prefetches a block, this bit is reset. When
SN4L is triggered to issue some prefetches, it checks the status bits
of the next four subsequent blocks and issues prefetches just for
those blocks that are demanded. In this way, SN4L issues timely
prefetches, and at the same time, removes redundant or useless
prefetches.

SN4L stores the status bits of the blocks in a large, tagless, and
direct-mapped table named SeqTable in which an entry is a status
bit. This decision helps SN4L to increase the number of SeqTable’s
entries to reduce the conflicts. We have used a 64 K entry SeqTable
for SN4L that imposes 8 KB storage overhead.

B. Recently Looked Up (RLU) Filtering
An aggressive prefetching mechanism like SN4L may still

impose a large number of redundant requests. Consider the
following sequence of demanded blocks:

...,(A, A+1)n,...

In this sequence, a backward branch in block A+1 brings the
execution back to block A. As A+ 1 is demanded, SN4L will
attempt to prefetch A+1 when it is triggered on block A. However,
it is hit, and such a prefetch is unnecessary. To avoid such cases, we
keep track of the blocks that are recently prefetched and filter the
prefetch candidates that are recently prefetched. To do so, we use a
first-in-first-out structure named RLU. Every time a prefetch request
is sent for a block, it is also pushed into RLU. The prefetcher
only sends a prefetch request for a block if it is not in RLU. RLU
filtering is not only used for SN4L prefetcher but also for the rest
of the prefetchers that we introduce.

RLU filtering has some advantages. It saves precious on-chip
bandwidth to look up the L1i cache. It also avoids many unnecessary
and redundant prefetch candidates to be inserted into the prefetch
queues, which helps useful prefetches to be served faster.

C. wrong SNL Prefetcher
SN4L may filter some useful prefetches due to complex control

flow changes. Consider the following stream of demanded blocks:

(..., A, A+1, ..., A, B, ...)n

The second time that SN4L is triggered on block A, it prefetches
blockA+1 as it is already demanded. But a discontinuity in blockA
changes the control flow to block B that makes A+1’s prefetching
useless. As a result, the next time that block A is accessed, SN4L

does not prefetch block A+1 as its state is prefetched. But the large
number of the blocks that are demanded or prefetched from the last
time that A+1 is prefetched evicts this block. However, at this time,
block A+1 is demanded by the processor, and SN4L has filtered
a useful prefetch. The wrong SNL prefetcher is designed to help
SN4L to detect such complex cases and prefetch the blocks.

The first goal of the wrong SNL prefetcher is to detect when
SN4L has filtered a useful prefetch candidate. To meet this goal,
whenever a cache miss occurs, RLU is looked up to find out if
SN4L has sent a prefetch for the missing block or not. This is
necessary because SN4L may prefetch the missing block, but
the cache miss has occurred because of prefetcher’s insufficient
timeliness. If the missing block misses in RLU, it means that SN4L
has wrongly filtered that block.

Wrong SNL devotes a counter for each block that increments
whenever such a case happens. Accordingly, wrong SNL prefetches
a block if the counter exceeds a predefined threshold regardless of
SN4L’s decision. Because SN4L may occasionally make wrong
predictions, a policy that just increments the counter may convert
wrong SNL prefetcher to the N4L prefetcher that prefetches almost
all of the blocks. To eliminate this scenario, wrong SNL needs to
have a policy to decrement the counters. Consequently, wrong SNL
periodically decrements the counter of all entries. Based on this pol-
icy, a block shows that it needs wrong SNL’s support if new mispre-
dictions by SN4L increments its counter to reach the desired thresh-
old. Otherwise, the counter decrements periodically and SN4L will
be the actual prefetcher that makes a decision on prefetching a block.

Wrong SNL prefetcher uses a table to hold the counters. Similar
to SeqTable, this table is direct-mapped and tagless. Each record
in this table is a three-bit counter. Whenever a counter reaches
three, wrong SNL prefetches for the block. Moreover, wrong SNL
decrements the counter of all entries every 50 K cycles. Wrong SNL
uses a 64 K-entry table that imposes 24 KB storage overhead.

D. Dis Prefetcher

Having a powerful sequential prefetcher, the remaining misses
are discontinuities that occur as a result of branch instructions’
execution. While discontinuity prefetcher is already proposed
to cover such misses [11], in the previous section, we discussed
the shortcomings of its design. In this section, we introduce Dis
prefetcher that addresses those shortcomings.

First, we show how the problem of having multiple targets can
be solved. When a source address has multiple targets, devoting
a single target for it loses a significant potential and it may even
be harmful because of sending useless prefetches. To clarify this,
consider the following sequence of demanded blocks:

(..., A, B, ..., A, C, ...)n

Suppose that blocks B and C are always a miss, and as
a consequence, DP should update its table. It means that DP
repetitively updates the record corresponding to the source block A
in its table. When DP finds out B is missed, it updates the table with
record (A, B) where A is the source, and B is the target. Similarly,
when DP finds out C is a miss, it will update the corresponding
record to (A, C). As such, DP jumps between these two records.
Moreover, whenever block A’s successor is B, DP holds the record
(A, C) and incorrectly prefetches C. Similarly, it prefetches B
whenever A’s succeeding block is C. Such cases show how DP
cannot cover the misses and even may make the situation worse
because of useless prefetches.

2



To eliminate these cases, Dis prefetcher exploits the observation
that when a source address has multiple discontinuities, the
sequence of their appearance can be modeled like this:

(..., A, D1, ..., A, D2, ..., A, Di, ..., A, Dk, ...)n

As a result, by knowing the last occurred discontinuity, the
next one can be predicted and prefetched. To take advantage
of this observation, Dis prefetcher devotes a circular history for
each discontinuity instead of a single target field. Whenever a
discontinuity occurs, the target address is placed at the tail of the
circular history. For prefetching, every time discontinuity prefetcher
consults its table; the circular history finds the last target address
that is inserted into it, then, it finds the second last insertion of
that target, and returns its successor in the circular history as
the prediction. Our results show that a 4 entry circular history is
sufficient to exploit the available potential.

Devoting a circular history for all observed discontinuities may
impose unnecessary storage overhead because a considerable frac-
tion of source addresses have a single target. To better manage the
storage budget, Dis prefetcher uses two distinct tables, one for source
blocks that have a single target, the other one for those having multi-
ple targets. First, discontinuities are inserted into the first table. Upon
an update, if the new target is different from the already recorded tar-
get, the discontinuity is moved to the table having a circular history.

To further decrease the storage cost, Dis prefetcher exploits
the observation that targets have similar high-order bits with their
source address. As a result, instead of storing the complete address
of the target, Dis prefetcher stores the low-order bits of the target
address. To construct the target address, Dis prefetcher appends
the recorded low-order bits of the target to the high-order bits
of the source address. Note that source address is available to
perform this operation since it is actually the address that is used to
lookup the discontinuity table. Accordingly, Dis prefetcher ignores
discontinuities that the high-order bits of the source are different
from those of the target. By empirical analysis, we find that storing
21 low-order bits of the targets is sufficient to obtain the speedup
that is offered when the target address is stored completely.

Moreover, unlike DP, Dis prefetcher uses partial tags for the
records stored in its tables. Providing the partial tag for the
records helps Dis prefetcher to detect conflicts to eliminate issuing
useless prefetches. We find that an 8-bit partial tag is sufficient to
distinguish the discontinuity tables’ hits from misses.

To summarize, our Dis prefetcher uses two tables, one for source
addresses that have a single discontinuity (DisTable single) and
the other one for those sources that have multiple discontinuities
(DisTable multiple). Both tables use an 8-bit partial tag and have a
4-way set-associative structure. These tables use the Least Recently
Used (LRU) replacement policy. As a result, we have used a 4 entry
queue to hold the LRU order of the entries in each set that requires
8 bits. Moreover, these tables store 21 low-order bits of the target ad-
dresses. DisTable single and DisTable multiple have 12 K and 4 K
entries and impose 46.5 and 48 KB storage overhead, respectively.

E. Triggering Policy and Proactive SN4L+wrong SNL+Dis
Prefetching

Our prefetchers are triggered by Tagged policy that prefetching
starts when a demand request is missed or already prefetched.
After the L1i receives a demand request for a prefetched block,
the block does not remain in the prefetched state, and it will be
considered a demand. This demand request triggers the sequential
prefetchers to find prefetch candidates for the next four subsequent
blocks. If they decide to prefetch a block, i.e., the prefetch

candidate is not found in RLU, Dis prefetcher is triggered to find a
discontinuity prefetch candidate for that block. With this approach,
the proposed prefetchers can cover the sequential region and up
to one discontinuity ahead of the current demanded block. However,
as frequent discontinuities may slow down prefetchers’ progress and
result in insufficient timeliness, we enhance the triggering policy
to enable the prefetchers to go multiple sequential and discontinuity
regions ahead, as needed. Such a proactive prefetching mechanism
is triggered as follows. When SN4L or wrong SNL prefetch a
block, Dis is triggered for those blocks, and whenever Dis prefetches
a block, all SN4L, wrong SNL, and Dis prefetchers are triggered
for that block. In other words, the proposed prefetchers are triggered
to prefetch sequential regions of discontinuities (SeqOnDis),
discontinuity of a discontinuity (DisOnDis), and discontinuity of
the sequential regions (DisOnSeq). However, this policy can make
progress without any limit. Consequently, we assign a counter to
each issued prefetch, and when a prefetch request triggers another
prefetch, we increment the counter. We terminate the chain of
prefetches when the counter reaches a predefined threshold. We find
seven to be an appropriate threshold in the context of the given traces.

Once the prefetch candidates are determined, they are pushed
into the RLUQueue to be looked up in RLU. Those prefetch
candidates that are in RLU are discarded. Those prefetch candidates
that miss in RLU are looked up in the L1i cache, and a prefetch
request is sent for those that miss in the L1i. We use a 32-entry
SeqQueue, DisQueue, and RLUQueue. Moreover, RLU holds
8 entries. These structures require 0.81 KB altogether.

F. Total Storage Cost
Our proposed prefetcher uses a 64 K entry SeqTable and a 64 K

entry wrong SNL table that require 8 and 24 KB, respectively.
DisTable single and DisTable multiple need 46.5 and 48 KB in
the given configuration. SeqQueue, DisQueue, RLUQueue, and
RLU impose 0.81 KB altogether to our design. Summing up the
storage requirements of these components together, our proposed
prefetcher has used 127.31 KB that meets the competition rules.

G. Dis Prefetching and Predecoding
In recent years, some proposals have leveraged the instruction

predecoding to eliminate frequent BTB misses, and hence, obtain
better performance [5], [7], [8]. Such a notion can be used for our Dis
prefetcher to reduce its storage requirements significantly. As discon-
tinuities are the consequence of branch instructions’ execution, in-
stead of recording the target block, Dis prefetcher can record the off-
set of the branch instruction in a cache block that has caused the dis-
continuity. Then Dis prefetcher can extract the target block by prede-
coding the corresponding instruction. Assuming 64-byte block size
and a fixed-length instruction set architecture that instructions are 32-
bit long (like SPARC v9 ISA), 4 bits are required to determine the
branch instruction inside a cache block. This is significantly lower
than the current implementation that records 21 low-order bits of the
target block to reconstruct it using the source address. Moreover, this
design can be applied to variable-length ISAs by recording the byte
offset of the branch instruction in a cache block, which needs 6 bits.
However, we do not use such optimizations because the competition
does not provide the required information in its given interface.

III. EVALUATION

A. Methodology
We evaluate our proposal in the context of the simulation

framework provided with IPC-1 [2]. We use ChampSim [1] with all
default configurations and follow the evaluation methodology of the

3



championship and run simulations for all 50 provided traces. Each
trace is executed for 50 million instructions to warm-up the caches,
branch predictors, and the required metadata for the prefetchers.
The subsequent 50 million instructions are used to collect the
Instruction Per Clock (IPC) metric. We compare our proposal,
SN4L+wrong SNL+Dis prefetcher with DP [11], RDIP [6],
Shotgun [7], and PIF [3] prefetchers. The figures show the obtained
results for ten selected benchmarks, the average of those ten, and
the average of all fifty traces.

B. Results
1) Performance Breakdown: Figure 1 shows how different

proposed prefetchers contribute to the final speedup offered
by SN4L+wrong SNL+Dis prefetcher. NL (Default) is an
implementation of the next-line prefetcher that is provided in
ChampSim [1]. Dis (Single) refers to a Dis prefetcher that just uses
DisTable single. On the other hand, Dis (Multiple) benefits from
both tables. Figure 1 shows how SN4L offers a considerably better
speedup as compared to NL and N4L prefetchers. Moreover, a
substantial speedup is obtained by SN4L+Dis (Single) prefetcher
that contributes to a smaller fraction of the storage cost required by
all prefetchers that are used in SN4L+wrong SNL+Dis prefetcher.
Moreover, this figure shows how augmenting the other prefetchers
to SN4L+Dis (Single) helps to cover the remaining potential to
offer 25% speedup as compared to the baseline design.

1.0

1.2

1.4

1.6

1.8

2.0

client
2

client
7

server
1

server
9

server
12

server
16

server
29

server
36

spec
gcc-3

spec
x264-1

Avrg.
10

Avrg.
All

Sp
e
e
d
u
p

NL (Default) NL (Our Implementation) N4L

SN4L SN4L+Dis (Single) SN4L+wrong_SNL

SN4L+Dis (Multiple) SN4L+Dis+wrong (Single) SN4L+wrong_SNL+Dis (Multiple)

Fig. 1. Performance breakdown of our proposal.

2) Comparison with competitors: Figure 2 shows the obtained
speedup when different storage budgets are provided for competing
prefetchers. When we utilize all the provided 128 KB storage
budget, SN4L+wrong SNL+Dis prefetcher offers 25% speedup,
which is the highest among the competitors. Moreover, PIF and
Shotgun are the other proposals that can provide the same-level of
speedup. On the other hand, DP and RDIP lag considerably behind
the others. When we limit the storage cost, we see that our proposal
still has the upper hand over the other prefetchers. Our proposal
offers 15 and 18% speedup when only 8 and 16 KB storage budget
is provided to it. This is over 3% higher than what is offered by
the closest competitor, Shotgun, that provides 12 and 15% speedup.
For Shotgun, we have assumed that the baseline design uses a 2 K
entry BTB that requires 23.7 KB storage [7]. As a result, the storage
budget is used to enlarge Shotgun’s BTBs. For example, in our
implementation of Shotgun whose storage budget is 8 KB, BTBs
have 40 KB storage1. In general, RDIP offers poor performance
because of two reasons. First, each prefetching record in RDIP
requires more than 20 bytes. As a result, RDIP’s table can hold a
fewer number of records in its table in a given budget. Moreover,

1In the authors-proposed configuration of Shotgun, it imposes 6 KB storage cost
for its prefetching buffers and the changes that are made to the BTB. However, we
have ignored this storage cost to reflect the impact of investing the storage budget
on the actual metadata that a prefetcher uses.

RDIP creates a considerably larger number of distinct prefetching
records. In consequence, we see that even providing 128 KB storage
budget is not sufficient for RDIP to reach the level of performance
that is offered by the competing prefetchers when they use a similar
storage budget. We also evaluated an implementation of RDIP with
an infinite storage budget and observed that this implementation
offers 23% speedup, which is close to that of the competitors. Finally,
we see the obtained speedup by DP prefetcher. Comparing N4L with
DP-8 KB, it can be concluded that DP-8 KB offers lower speedup
because of a large number of useless prefetches as the consequence
of the conflicts in the discontinuity table that cannot be detected.
In DP-128 KB, DP can hold a larger number of records, and hence,
conflicts are decreased. In consequence, DP-128 KB offers 13%
speedup, which is an improvement compared to the N4L prefetcher.
However, DP-128 KB has a significant gap with our proposal. It
clearly shows how our modifications to the conventional sequential
and discontinuity prefetchers resulted in a significant improvement.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

8
KB

16
KB

128
KB

8
KB

16
KB

128
KB

8
KB

16
KB

128
KB

8
KB

16
KB

128
KB

8
KB

16
KB

128
KB

RDIP Shotgun PIF DP Our Proposal

Sp
e
e
d
u
p

Fig. 2. Speedup offered by competing prefetchers with different storage budgets.

REFERENCES

[1] “ChampSim,” https://github.com/ChampSim/, 2020.
[2] “IPC-1,” https://research.ece.ncsu.edu/ipc/, 2020.
[3] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive Instruction Fetch,” in

Proceedings of the 44th Annual ACM/IEEE International Symposium on
Microarchitecture (MICRO), Dec. 2011, pp. 152–162.

[4] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Tempo-
ral Instruction Fetch Streaming,” in Proceedings of the 41th Annual ACM/IEEE
International Symposium on Microarchitecture (MICRO), Nov. 2008, pp. 1–10.

[5] C. Kaynak, B. Grot, and B. Falsafi, “Confluence: Unified Instruction Supply for
Scale-out Servers,” in Proceedings of the 48th Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO), Dec. 2015, pp. 166–177.

[6] A. Kolli, A. Saidi, and T. F. Wenisch, “RDIP: Return-Address-Stack Directed
Instruction Prefetching,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), 2013.

[7] R. Kumar, B. Grot, and V. Nagarajan, “Blasting Through the Front-End
Bottleneck with Shotgun,” in Proceedings of the 23rd International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Mar. 2018, pp. 30–42.

[8] R. Kumar, C.-C. Huang, B. Grot, and V. Nagarajan, “Boomerang: A
Metadata-Free Architecture for Control Flow Delivery,” in Proceedings of the
IEEE International Symposium on High-Performance Computer Architecture
(HPCA), Feb. 2017, pp. 493–504.

[9] G. Reinman, B. Calder, and T. Austin, “Fetch Directed Instruction Prefetching,”
in Proceedings of the 32nd Annual ACM/IEEE International Symposium on
Microarchitecture (MICRO), Nov. 1999, pp. 16–27.

[10] A. J. Smith, “Sequential Program Prefetching in Memory Hierarchies,”
Computer, vol. 11, no. 12, pp. 7–21, Dec. 1978.

[11] L. Spracklen, Y. Chou, and S. G. Abraham, “Effective Instruction Prefetching
in Chip Multiprocessors for Modern Commercial Applications,” in Proceedings
of the 11th IEEE International Symposium on High-Performance Computer
Architecture (HPCA), Feb. 2005, pp. 225–236.

4


